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Abstract
Unitary integration is a numerical method that preserves the structure of the
quantum Liouville equation by evolving the density via unitary transformations.
Unitary integrators preserve the kinematic invariants cj = tr ρj (j = 1, . . . , n)
to all orders in the time step. Here we extend unitary integration to weakly
dissipative systems. We apply the technique of operator splitting, using a unitary
integrator for the Hamiltonian evolution and a conventional integrator for the
dissipative piece. In this way, we guarantee that all dissipation and decoherence
(variation of the cj ) is due to the new non-Hamiltonian terms and not to any
numerical artifacts. We illustrate the method with examples.

PACS numbers: 02.60.Cb, 02.90.+p, 03.65.-w, 03.65.Yz, 32.80.-t

1. Introduction

It is common that the differential equations used to model physical systems possess some
‘structural’ features that embody important physical properties (e.g., differential-algebraic
invariants such as energy) which are reflected in the qualitative behaviour of the system. Often,
this structure is purposely built-in to the model on physical grounds. Unless the numerical
methods are specially designed, a numerical solution of such a system will not, in general,
respect this structure, leaving open the possibility of qualitatively incorrect results. Structural
considerations are particularly important when the time domain of interest is much larger than
the system’s characteristic time scale(s). In such cases it can be difficult, if not impossible,
to obtain even qualitatively correct results when the numerical method does not preserve the
system’s structure. (A particularly interesting example is the simulation of the long-time
evolution of the solar system where phase-space conserving (symplectic) techniques proved
indispensable [1].) At the very least, the penalty for ignoring the essential structure of the
system is a greatly increased computational cost forced by the necessity of a small time step to
keep the effects of structural errors from accumulating catastrophically. For a more detailed
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discussion of these effects along with various examples see Shadwick et al [2] and the references
therein.

The goal is not to eliminate all numerical error but rather to identify and minimize
those classes of numerical errors that are most damaging to the solution. Backwards error
analysis [3–7] provides significant understanding in how a numerical method may lead to a
numerical solution with qualitatively incorrect behaviour. The basic approach is to take the
view that when a numerical method is applied to a given differential equation, the resulting
numerical solution, while an approximation to the exact solution of the original equation, is, in
fact, the exact solution of some differential equation. Clearly this second differential equation
is related to the original equation, and the form of this new equation can often lead to valuable
insight into the behaviour of the numerical method [8]. Of particular importance will be the
physical consequence of any coupling terms not present in the original system; it is terms of
this type which are the cause of structural errors.

These ideas are also relevant to weakly non-ideal systems, such as systems with a small
amount of dissipation. Using the technique of operator splitting [9, 10], one separates the
differential operator into two pieces: the operator representing the ideal part of the system and
whatever non-ideal terms remain. A structure-preserving integrator is used for the former and
a generic method for the latter. This technique guarantees that the numerical solution has the
proper limit as the dissipation terms vanish. Specifically, consider the system of equations

ψ̇ = L1[ψ] + L2[ψ] (1)

and let S1(τ ) and S2(τ ) be the respective numerical evolution operators for a time interval τ .
If S1 and S2 are accurate to at least second order, then a second-order approximation to the
full evolution is

ψ(t + τ) = S1(
1
2 τ) ◦ S2(τ ) ◦ S1(

1
2 τ)ψ(t) + O(τ 3) (2)

where ◦ denotes operator composition.
Consider a weakly dissipative system, which in the absence of dissipation possesses some

structure (for example, in the ideal limit the system may be Hamiltonian). In this case, the
structural errors committed by standard methods can mimic the effects of dissipation, enhancing
(or perhaps masking) what would otherwise be a small effect. In strongly non-ideal systems, the
errors introduced in evolving the ideal part of the system are not as significant in that they are not
likely to yield behaviours that are not otherwise present. The same is true for errors encountered
in the evolution of the dissipative terms. Empirically, one finds that dissipation terms tend to be
sufficiently simple that they possess no delicate structure. Consequently, numerical errors will
generally not result in qualitatively different behaviour, merely in different effective values for
the dissipation parameters.

2. n-level quantum systems with weak dissipation

Our interest here is to explore how these ideas can be applied to an n-level quantum system
described by a density matrix, ρ, subject to both reversible and irreversible processes. A
general dynamical equation governing the evolution of ρ is the master equation [11]

h̄ ρ̇ = −i [H, ρ] + �[ρ] (3)

where the hermitian Hamiltonian H describes the reversible dynamics and the (general)
dissipation3 is represented by the linear operator �. Examples include an atomic system

3 Although here we are primarily concerned with dissipative processes, � can represent arbitrary non-Hamiltonian
processes.
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interacting with an external radiation field subject to spontaneous emission or a collection of
ions in a trapping potential subject to external laser pulses and decoherence. We are most
concerned with the case where the irreversible processes are weak compared to the reversible
processes, i.e., the case ‖�‖ � ‖H‖.

For the moment, let us consider the properties of the quantum Liouville equation [12], the
ideal counterpart of (3):

h̄ ρ̇ = −i [H, ρ] . (4)

This equation has a non-trivial kinematic structure—the Hioe–Eberly invariants

cj = tr ρj j = 1, 2 . . . , n (5)

are non-evolving regardless of the form of the Hamiltonian [13]. These invariants are a direct
consequence of the unitary evolution of the density matrix and are the analogues of the Poincaré
invariants in classical mechanics, carrying information of equal physical import. A numerical
solution of (4) where the cj are not preserved is thus in danger of being unphysical.

In the method of unitary integration [14], the structure of the quantum Liouville equation
is preserved exactly since the numerical time advance map is constructed as a unitary
transformation. That is, the density matrix is evolved through a time interval τ according
to

�n+1 = U�n U
† (6)

where �n is the numerical approximation to ρ(n τ) and U is a unitary matrix which
approximates the true evolution operator U(t, t + τ) accurate through order κ in τ :

U = U(t, t + τ) + O(τ κ+1) . (7)

Thus, although �n is only a numerical approximation to the true solution of the quantum
Liouville equation, the cj are exactly conserved. Furthermore, since the numerical method
advances �n in time by a unitary transformation, we are guaranteed that the numerical solution
will be hermitian.

Returning to (3), our strategy is to use a unitary integrator for the Hamiltonian part of the
evolution and a generic algorithm for the dissipative terms. Thus in the limit ‖�‖ → 0, the
Hioe–Eberly invariants are exactly conserved. In this way we guarantee that all dissipation
and decoherence (variation of the cj ) are due to the non-Hamiltonian terms, and not to any
numerical artifacts.

3. Constructing unitary integrators

As with every unitary matrix, U can be expressed as the exponential of an anti-hermitian
matrix. For our purposes, it is convenient to write

U(t, τ ) = e−iτA(t,τ ) (8)

where A is hermitian. The matrix A is computed by expanding (6) in a Taylor series
about τ = 0 and matching term-by-term with the Taylor series for ρ(t + τ) obtained from
the quantum Liouville equation. A straightforward, if tedious, calculation [14] reveals the
following approximations for A:

to second order

A = H(t) +
1

2!
τ H ′(t); (9)
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to third order

A = H(t) +
1

2!
τ H ′(t) +

1

3!
τ 2 H ′′(t) +

i

12
τ 2
[
H(t),H ′(t)

] ; (10)

and to fourth order4

A = H(t) +
1

2!
τH(t)′ +

1

3!
τ 2H(t)′′ +

1

4!
τ 3H(t)′′′ +

i

12
τ 2
[
H(t),H(t)′

]
+

i

4!
τ 3
[
H(t),H(t)′′

]
. (11)

Note that to obtain accuracy beyond second order, one must take into account that, in general,
[H(t1),H(t2)] 	= 0.

Fortunately, to use these expressions for U , it is not necessary to exponentiate a (general,
possibly quite dense) n × n matrix. We are free to approximate A in any way consistent with
the order of the method. This freedom can be used to simplify the construction of U(t, τ ). In
the following, it is convenient to assume that H is traceless. To begin, let λk be a basis for the
set of all (traceless) n × n hermitian matrices, with normalization

tr λi λj = 2 δij (12)

whence

A =
n2−1∑
k=1

αk λk where αk = 1
2 tr Aλk. (13)

In addition, we may choose the λk in such a way that either λk is diagonal or has at most two
non-zero elements. In either case, eiaλk is easily computed. Our goal is to replace the single
exponential in (8) with a product of exponentials of the λk:

e−iτA =
n2−1∏
k=1

e−iτ βk λk + O(τ κ+1) (14)

for some βk . Since the λk do not necessarily commute with one another, the βk will depend
on the αj in a complicated manner.

While it is possible to determine the βk in (14) by repeated application of either the
Campbell–Baker–Hausdorf [15–17] or the Zassenhaus [18] formula, such an approach quickly
becomes quite complicated as n increases and does not seem to be well suited to symbolic
computation. A more straightforward approach is, using (13), to expand the left- and right-
hand sides of (14) as polynomials in τ and match terms order-by-order [19]. For an integrator
of order κ , we can write αk as

αk =
κ−1∑
j=0

τ jα
(j)

k (15)

and similarly

βk =
κ−1∑
j=0

τ jβ
(j)

k + O(τ κ) . (16)

Using these expressions in (14), we obtain

1 − i τ
κ−1∑
j=0

n2−1∑
k=1

τ j α
(j)

k λk − 1
2 τ

2
κ−1∑
j,j ′=0

n2−1∑
k,k′=1

τ j+j ′
α
(j)

k α
(j ′)
k′ λk λk′ + . . .

=
n2−1∏
k=1

(
1 − i τ

κ−1∑
j=0

τ j β
(j)

k λk − 1
2 τ

2
κ−1∑
j,j ′=0

τ j+j ′
β
(j)

k β
(j ′)
k λ2

k + . . .

)
. (17)

4 There is a misprint in equation (6) of [14] which is corrected here.



Unitary integration with operator splitting for weakly dissipative systems 4775

Collecting powers of τ we find

−i τ
n2−1∑
k=1

α
(0)
k λk − i τ 2

n2−1∑
k=1

α
(1)
k λk − 1

2 τ
2
n2−1∑
k=1

(
α
(0)
k

)2
λ2
k − 1

2 τ
2
n2−1∑
k 	=k′

α
(0)
k α

(0)
k′ λk λk′ + . . .

=
n2−1∏
k=1

(
1 − i τ β(0)

k λk − i τ 2 β
(1)
k λk − 1

2 τ
2
(
β
(0)
k

)2
λ2
k + . . .

)
− 1

= − i τ
n2−1∑
k=1

β
(0)
k λk − i τ 2

n2−1∑
k=1

β
(1)
k λk − 1

2 τ
2
n2−1∑
k=1

(
β
(0)
k

)2
λ2
k

−τ 2
n2−1∑
k′>k

β
(0)
k β

(0)
k′ λk λk′ + . . . . (18)

Multiplying (18) by λp and using (12) yields

τ α(0)
p + τ 2α(1)

p − i

4
τ 2

n2−1∑
k′>k

α
(0)
k α

(0)
k′ tr λp(λk λk′ + λk′ λk) + . . .

= τ β(0)
p + τ 2β(1)

p − i

2
τ 2

n2−1∑
k′>k

β
(0)
k β

(0)
k′ tr λp λk λk′ + . . . . (19)

Equating like powers of τ we have

β(0)
p = α(0)

p (20)

β(1)
p = α(1)

p +
i

4

n2−1∑
k′>k

α
(0)
k α

(0)
k′ tr λp [λk, λk′ ] (21)

...

Clearly, one can continue this expansion to obtain equations for β(2)
p , . . . , β(κ−1)

p . Moreover
this technique is well suited to straightforward implementation in a symbolic algebra language.
In such an implementation, one uses the explicit form of the λk to obtain a matrix equation at
each order, which naturally leads to a set of linear equations for β(j)

k . This approach eliminates
the need for developing explicit expressions for β(j)

k .

4. An example

By way of example, we consider a two-level atom with population-preserving decay [11]. The
Hamiltonian for this system is

H =
 ε �(t)

�(t) −ε

 (22)

where, for simplicity, we have taken �(t) to be real. The dissipation operator is given by

�[ρ] =
 γ ρ22 − 1

2 γ ρ12

− 1
2 γ ρ21 −γ ρ22

 . (23)

As we explained above, we are interested in the case of weak dissipation, i.e., in γ � ε.
Following the notation of (13), for a second-order integrator we have α1 = � + 1

2 τ �
′,

α2 = 0 and α3 = ε, and we need to compute βk through order τ . From (20) and (21) we
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find β1 = � + 1
2 τ �

′, β2 = τ ε �, and β3 = ε. Explicitly the unitary integrator is

U =
 cos(� τ + 1

2 �
′ τ 2) −i sin(� τ + 1

2 �
′ τ 2)

−i sin(� τ + 1
2 �

′ τ 2) cos(� τ + 1
2 �

′ τ 2)


×
 cos(ε � τ 2) − sin(ε � τ 2)

sin(ε � τ 2) cos(ε � τ 2)


 e−i ετ 0

0 ei ετ

 . (24)

We obtain an evolution operator, G(τ ), for the dissipative part by solving

ρ̇ = �[ρ] (25)

using the midpoint rule

�n+1 − �n = τ �[ 1
2 (�n+1 + �n)] . (26)

We can interpret (26) as differencing (25) at t + 1
2τ , which yields an algorithm accurate to

second order. Since � is a linear operator, (26) can be solved directly to provide an explicit
formula for �n+1:

�n+1 = G(τ )�n

=


(�n)11 +

τ γ

1 + 1
2 τ γ

(�n)22
1 − 1

4 τ γ

1 + 1
4 τ γ

(�n)12

1 − 1
4 τ γ

1 + 1
4 τ γ

(�n)21
1 − 1

2 τ γ

1 + 1
2 τ γ

(�n)22


. (27)

Following (2), we can write the total evolution operator as

�n+1 = G( 1
2 τ) ◦ U(t, τ ) ◦ G( 1

2 τ) �n (28)

where

U(t, τ ) �n = U�n U
† (29)

is the unitary integrator. Note that both tr G = 1 and tr U = 1 and hence tr �n+1 = tr �n.
Below we compare the results of using this split-operator method with the results of a

second-order predictor–corrector algorithm (Heun’s method [20]). Applying the predictor–
corrector formulae to (3) gives

�n+1 = �n − i τ
[
H(nτ) + H((n + 1)τ ), �n

]
+ τ �[�n] + 1

2 τ
2�
[
�[�n]

]
− 1

2 τ
2
[
H((n + 1)τ ),

[
H(nτ), �n

]]− 1
2 i τ 2�

[[
H((n + 1)τ ), �n

]]
− 1

2 i τ 2
[
H((n + 1)τ ),�[�n]

]
(30)

where we have made use of the fact that� is linear. Now, as expected, tr �n+1 − tr �n = 0, since
the trace of a commutator vanishes as does tr �, thus this algorithm also exactly conserves the
population.

We provide a pair of numerical examples to illustrate the advantage of the structure-
preserving approach over the general-purpose algorithm. We take the interaction to be a
Gaussian pulse

�(t) = �0 e−(t−t0)
2/σ 2

(31)

and use the parameters

ε = 1, �0 = 1
2 , t0 = 10, σ = 20

3 and γ = 1
20 . (32)
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Figure 1. The density matrix from a numerical solution of (3) with the Hamiltonian given by (22)
and (31), the dissipation is given by (23), where ε = 1, �0 = 1

2 , t0 = 10, σ = 20
3 , γ = 1

20 , τ = 1
20 .

The initial condition is given by (33). The heavy dashes and solid lines denote the predictor–
corrector and unitary integrator solutions, respectively. The panels are: inversion ((�n)22 − (�n)11)
(a); error in the inversion (b); Im (�n)12 (c); error in Im (�n)12 (d); tr �2

n (e); error in tr �2
n (f );

energy expectation value (tr H�n) (g); and energy error (h).

We set the initial condition

ρ(t = 0) =
 1

2
1
4 eiπ/4

1
4 e−iπ/4 1

2

 (33)

and use the same time step τ = 1
20 for both methods. The first set of numerical results is

shown in figure 1. Clearly the unitary integrator produces smaller errors in the inversion and
coherence elements, and is also somewhat better in the energy than predictor–corrector. As
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Figure 2. The density matrix as in figure 1 but with γ = 1
100 .

with symplectic integrators, the nature of the energy error is not surprising. Since the unitary
integrator is effectively constructed from an approximate Hamiltonian, we cannot expect tr H�n
to be computed exactly but rather we expect the error in tr H�n to oscillate rather than exhibit
secular growth [14].

Figure 2 shows numerical results with the same parameters as above except for γ = 1/100.
In both cases, the energy error for both methods is quite similar and provides little insight into
which method provides the more accurate solution. The errors in tr ρ2 are more telling: the
operator-splitting method clearly performs better. In figure 2(e), we see how the structural
errors introduced by the predictor–corrector algorithm reduce the decoherence caused by the
dissipation.
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4.1. Discussion

In view of the results shown, we considered several different approaches to handling the
evolution of the dissipative operator, in order to understand the origin of the superior
performance of the algorithm based on the unitary integrator. In addition to using the midpoint
rule, splittings based on a predictor–corrector solution to (25) as well as splittings based on
the exact solution of (25) were explored. (Since the exact solution requires the evaluation
of an exponential, it is much more efficient to solve the differential equation than to employ
the exact solution.) In each of these cases the full evolution was computed via (28) with the
appropriate choice for G. Regardless of the method of handling the dissipation, essentially the
same results were obtained; clearly the advantage of the operator-splitting approach is due to
the use of the unitary integrator.

To understand these results better, it is worthwhile to examine the numerical methods in
detail through backwards error analysis [3–7]. In section 1, we argued that dissipation operators
are typically sufficiently simple to not possess a ‘structure’ that is physically important. This
assertion is borne out by the true dynamical equations corresponding to the various numerical
solutions. For the full system (3), this analysis is rather cumbersome, so we consider separately
the Hamiltonian and dissipative terms.

We begin by examining the consequence of applying the midpoint rule to

ρ̇ = �eff [ρ] ≡
 γ1 ρ22 − 1

2 γ2 ρ12

− 1
2 γ2 ρ21 −γ1 ρ22

 . (34)

The idea is to determine γ1 and γ2 such that when the midpoint rule is applied to (34) we obtain
the exact solution of (25). Since the midpoint rule is second order, we expect γ1,2 = γ +O(τ 2).
The procedure is to compare the midpoint rule solution of (34) with the exact solution of (25),
generated from the Taylor series expansion about τ = 0. Some straightforward algebra gives

γ1 = γ − 1
12 τ

2γ 3 + 1
120 τ

4γ 5 + O(τ 6γ 7) (35)

γ2 = γ − 1
48 τ

2γ 3 + 1
1920 τ

4γ 5 + O(τ 6γ 7). (36)

What this says is that when we use the midpoint rule to solve (25) we are in fact getting the exact
solution of the slightly modified system (34). Now although γ1 	= γ2, the physical meaning of
the dissipation operator is only slightly changed since

γ1

γ2
= 1 − 1

16 τ
2γ 2 + O(τ 4γ 4). (37)

The important point is that this modified dissipation operator is physically reasonable, with
qualitative and quantitative behaviour very similar to the original dissipation mechanism. This
is precisely what it means not to have a delicate structure; the quantitative and qualitative
behaviour is robust to small perturbations in the form of the dynamical equations. However,
had the dissipation model been more complex, it is quite likely that to determine �eff it would
have been necessary to introduce new couplings in the equations which would most likely lead
to qualitatively different physical content. This is exactly what we will see below when we
perform a similar analysis on the Hamiltonian part of (3).

Performing this same analysis for the predictor–corrector solution of (25) yields a very
similar result. In this case we find

γ1 = γ + 1
6 τ

2 γ 3 + 1
8 τ

3 γ 4 + 2
15 τ

4 γ 5 + O(τ 5γ 6) (38)

γ2 = γ + 1
24 τ

2 γ 3 + 1
64 τ

3 γ 4 + 1
120 τ

4 γ 5 + O(τ 5γ 6) (39)

and
γ1

γ2
= 1 − 1

8 τ
2γ 2 + O(τ 3γ 3) (40)
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leading us to the same basic conclusion as for the midpoint algorithm.
We now turn to an analysis of the numerical solution of the purely Hamiltonian system (4).

For this system, the predictor–corrector time advance is

�n+1 = �n − i τ
[
H(nτ) + H((n + 1)τ ), �n

]− 1
2 τ

2
[
H((n + 1)τ ),

[
H(nτ), �n

]]
. (41)

In the same fashion as above, we seek to determine the effective Hamiltonian

Heff =
 εeff �eff

�∗
eff −εeff

 . (42)

such that (41) applied using Heff gives the exact solution to (4). It turns out that for predic-
tor–corrector, it is possible to achieve this goal only through third order in τ ; the fourth-order
corrections result in a non-hermitian Heff . To third order we find:

εeff = ε
[
1 − 2

3 τ
2
(
�2 + ε2

)]
(43)

�eff = �
[
1 − 2

3 τ
2
(
�2 + ε2

)]− 1
12 τ

2 �′′ − 1
3 i τ 2 �′. (44)

At fourth order, the effective system is no longer Hamiltonian but contains dissipation, thus we
expect the predictor–corrector to introduce errors in the Hioe–Eberly invariants at fourth order
(for example, see equation (11) in [14]). This calculation becomes increasingly complex; we
can adequately illustrate our point more clearly by considering a constant Hamiltonian. At
fourth order, solving (4) with (41) is equivalent to the exact solution of

h̄ ρ̇ = −i [Heff , ρ] + �eff [ρ] (45)

with

εeff = ε
[
1 − 2

3 τ
2
(
�2 + ε2

)]
(46)

�eff = �
[
1 − 2

3 τ
2
(
�2 + ε2

)]
+ i τ 3ε �

(
�2 + ε2

)
(47)

and

�eff [ρ] = τ 3 �2
(
�2 + ε2

) ρ22 − ρ11 ρ21 − ρ12

ρ12 − ρ21 ρ11 − ρ22


+2 τ 3 ε �

(
�2 + ε2

) 0 ρ11 − ρ22

ρ11 − ρ22 0


−2 τ 3 ε2

(
�2 + ε2

) 0 ρ12

ρ21 0

 . (48)

Notice that the form of �eff describes a much different set of physical processes than
those responsible for the actual dissipation in (3). For example, the presence of the inversion
in the off-diagonal elements and the fact that �eff drives the system towards equal populations
rather than decay to the lower state. Although ‖�eff‖ � ‖�‖, the numerical results show that
�eff is a sufficient perturbation to significantly affect the solution. Thus even though (3) does
not exactly preserve the cj , the remnants of the ideal structure of (4) are sufficiently strong
that the perturbations introduced by the predictor–corrector are enough to adversely affect the
accuracy of the numerical solution.

5. Conclusions

The advantages of unitary integration are seen most dramatically in ideal or nearly ideal
systems sensitive to small errors. The important point to be made here, however, is that the
operator-splitting approach where a unitary integrator is used for the Hamiltonian evolution is
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guaranteed to recover the ideal solution in the limit of small dissipation, whereas this is not
the case for a generic method. This is an important consideration when studying near-ideal
situations where decoherence is small, but may be the primary point of interest or limiting
factor (as in studies of quantum computation in real systems, for example). Examples of
such systems include (i) those where the time scale of interest is very long compared to the
natural scales of the problem, (ii) systems with sensitive dependence upon initial conditions
and (iii) systems where dissipation and decoherence are small, but of significant importance.
Further areas of future investigation include application of these methods to such systems as
(i) atomic clocks of various types [21], and (ii) numerical studies of decoherence in quantum
computers. This latter application may include studies of decoherence-free subspaces, for
which the structure of the dissipation operator is of significant importance.
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